
Kitten Lightweight Kernel

August 7, 2008

SAND2008-5157P

Kevin Pedretti

Sandia National Laboratories

ktpedre@sandia.gov

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Motivations for LWK on Capability Platforms

• Scalability
– Low to no OS noise/jitter

• Selfish on very large Infiniband cluster showed
0.5% average noise, 2.5% worst case (see SC08 paper)

• Hard to unintentionally introduce noise with LWK

– Support full potential of network HW
• No error-prone memory pinning/unpinning
• Physically contiguous memory => 2x higher msg. rate

• Deterministic Performance
– Minimal run-to run variability

– Simplifies performance tuning/debugging

• Reliability (next slide)

Software MTTI

• 13 Week Period (16 Sep 2007 to 16 Dec 2007)
– Catamount: ~1735 hours
– CNL: ~569 hours

System Hours Interrupts S/W MTTI
CNL Site 2136 5 427
CNL Site 2095 7 299
CNL Site 1964 2 982
CNL Site 840 0 -
Sandia (Catamount) 2093 1 2093
Catamount Site 2087 4 522
Catamount Site 2043 0 -
Catamount Site 2162 1 2162
Catamount Site 2164 1 2164
Catamount Site 2110 0 -

Common Criticisms of LWK

• It's not Linux/Solaris/BSD/AIX/Windows/etc.

• It's missing feature X (threads, python, dynamic libs, ...)

• It's too much work to maintain

• It's a proprietary black box

• There's no community around it

• There's no market for it

• We are trying to address (some of) these with Kitten

• Also, time is ripe for innovation
– Multicore provides lots of resources, OS role changed

– My opinion is OS should be treated more like an
application or library

Kitten Defined

• Kitten is a simple, open-source (GPL) OS kernel
that provides basic mechanisms for managing
memory, computational tasks, hardware devices,
and (in the future) guest operating systems. Kitten
does not have an in-kernel file system and instead
relies on function-shipping for I/O.

• Kitten is not derived from Catamount
– Uses no kernel-level code from Catamount or

OpenCatamount
– Essentially same LWK philosophy

• Kitten is derived from Linux, but is not a fork
– Only leverage pieces of code where it makes sense

– No expectation of keeping up with Linux

Kitten Defined (cont.)

• Kitten is only a small part of the compute node
system software. Suite of user-level libraries
provide POSIX environment and interface to the
full-system runtime environment (e.g., the job
launcher and node allocator).
– Currently running Kitten with Catamount user-level

(PCT, glibc, libsysio, liblustre)
– Kitten provides subset of Linux ABI system calls,

which someday may enable more standard user-level

• Not intended to be a general-purpose OS kernel...
simple compute node OS kernel for HPC

• Research platform for system software

Kitten is designed for an MPP
environment with functional partitions

 High
Speed

External
 Network

Service
Processors
 (Linux)

Compute
Processors
(LWK)

I/O processors (Linux)

Network I/O
Processors (Linux)

Project Info

• Funded by Sandia LDRD (Lab Directed Research and
Development) and CSRF (Computer Science Research
Foundation)
– Research multi-core and accompanying trends

– More flexible and open LWK platform

– Target next-generation capability platforms

• Kitten is ~1 yr. old, based on work from prior CSRF
project. Two more years of funding remain.

• 1.25 FTE effort
– Trammell Hudson, Kurt Ferreira, Sue Kelly, Michael Levenhagen,

and Kevin Pedretti

– Collaborators at Univ. New Mexico and Northwestern

• Key measure of success is having impact on platforms,
enabling new capabilities

Kitten Kernel-level Functionality

• X86_64 bootstrap (from Linux)
– Physical memory detection (NUMA)

– CPU detection (shared cache topology)

– Kernel runs on all CPUs, locking for shared data

• Physical memory management
– Tracks contiguous regions of physical memory

• No page map
• Each region has type, name, lgroup, + other meta-data

– Portion of memory set-aside and managed by kernel,
remainder managed by user-space init task

• Default first 8 MB used for kernel dynamic allocations,
buddy allocator

• Large contiguous region(s) available for applications

Kitten Kernel-level Functionality (cont.)

• Virtual memory management
– Address space object and management API

– Similar to Linux MM and VMA
– Contiguous virtual memory maps to contiguous

physical memory, possibly via a mapping function

• Task management
– Per CPU run queues

• No periodic OS tick

• Multiple scheduling policies

– Tasks that share an address space are threads

– Can support more tasks than CPUs, not usual case

– No kernel threads yet

Kitten Kernel-level Functionality (cont.)

• Device management
– Simple console system

• Drivers for VGA, PC serial port, Cray XT L0
• KGDB support (ported by Univ. New Mexico)

– Portals network stack
• Based on LGPL Portals core + proprietary Cray

SeaStar NAL (Interrupt based)

• Uses Linux IOCTL interface, like Cray Portals

– Device driver structure similar to Linux
• External modules not supported initially, maybe later
• Interrupts are supported
• Lots missing, but adding functionality as necessary;

Platform is the target, not every device out there

Kitten Kernel-level Functionality (cont.)

• Other
– Sending signals to tasks (currently enough for uClibc's

pthreads implementation)

– Linux clone() interface for creating threads

– Shared memory regions between tasks (currently enough
for PCT)

– SMARTMAP support (see SC08 paper)

• Future
– Hypervisor functionality (FY09)

• Currently investigating, initial plan to use
Xen+paravirtualized guests

• Allocate physically contiguous memory to guests

– Heterogeneous CPUs, Asymmetric slave CPUs, ...

Current Status

• Nearing initial release
– X86_64, Cray XT, PC (mostly under Qemu+Bochs)

• Leveraging Catamount user-level
– Scalable job load
– User-level I/O libraries (glibc, libsysio, liblustre)

• Will be adding
– Support for user-level threads (sort of works now)

– Support for run-time and load-time dynamic libs

– Use of standard Glibc

Research

• Impact of physically contiguous memory
– Can result in better best case bandwidth, worse worst-

case (due to DRAM bank conflicts)
– Large performance swings based on alignment/offsets

• SMARTMAP + bandwidth reduction techniques
– All address spaces mapped into each task

– Single copy intra-node MPI

– “Partitioned nodal address space”

• Hooks for lightweight threads and synchronization,
advanced architecture capabilities

• More transparent reliability mechanisms
• Virtualization

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

